

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to the Semantic Versioning [http://semver.org/spec/v2.0.0.html].

unreleased [https://github.com/xaynetwork/xaynet/compare/v0.11.0...HEAD]

[0.11.0] - 2021-01-18

Added

Rust SDK xaynet-sdk

xaynet-sdk contains the basic building blocks required to run the Privacy-Enhancing Technology
(PET) Protocol. It consists of a state machine and two I/O interfaces with which specific Xaynet
participants can be developed that are adapted to the respective environments/requirements.

If you are interested in building your own Xaynet participant, you can take a look at
xaynet-sdk, our Rust participant [https://github.com/xaynetwork/xaynet/blob/master/rust/examples/test-drive/participant.rs]
which we use primarily for testing or at
xaynet-mobile [https://github.com/xaynetwork/xaynet/blob/master/rust/xaynet-mobile/src/participant.rs]
our mobile friendly participant.

A Mobile friendly Xaynet participant xaynet-mobile

xaynet-mobile provides a mobile friendly implementation of a Xaynet participant. It gives the user
a lot of control on how to drive the participant execution. You can regularly pause the execution of
the participant, save it, and later restore it and continue the execution. When running on a device
that is low on battery or does not have access to Wi-Fi for instance, it can be useful to be able to
pause the participant.

C API

Furthermore, xaynet-mobile offers C bindings that allow xaynet-mobile to be used in other
programming languages ​​such as Dart.

Python participant SDK xaynet-sdk-python

We are happy to announce that we finally released xaynet-sdk-python a Python SDK that
consists of two experimental Xaynet participants (ParticipantABC and AsyncParticipant).

The ParticipantABC API is similar to the old one which we introduced in v0.8.0. Aside from some
changes to the method signature, the biggest change is that the participant now runs in its own
thread. To migrate from v0.8.0 to v0.11.0 please follow the
migration guide [https://github.com/xaynetwork/xaynet/blob/master/bindings/python/migration_guide].

However, we noticed that our Participant API may be difficult to integrate with existing
applications, considering the code for the training has to be moved into the train_round method,
which can lead to significant changes to the existing code. Therefore, we offer a second API
(AsyncParticipant) in which the training of the model is no longer part of the participant.

A more in-depth explanation of the differences between the Participant APIs
and examples of how to use them can be found
here [https://github.com/xaynetwork/xaynet/blob/master/bindings/python/README].

Multi-part messages

Participant messages can get large, possibly too large to be sent successfully in one go. On mobile
devices in particular, the internet connection may not be as reliable. In order to make the
transmission of messages more robust, we implemented multi-part messages to break a large message
into parts and send them sequentially to the coordinator. If the transmission of part of
a message fails, only that part will be resent and not the entire message.

Coordinator state managed in Redis

In order to be able to restore the state of the coordinator after a failure or shutdown,
the state is managed in Redis and no longer in memory.

The Redis client can be configured via the [redis] setting:

[redis]
url = "redis://127.0.0.1/"

Support for storing global models in S3/Minio

The coordinator is able to save a global model in S3/Minio after a successful round.

The S3 client can be configured via the [s3] setting:

[s3]
access_key = "minio"
secret_access_key = "minio123"
region = ["minio", "http://localhost:9000"]

[s3.buckets]
global_models = "global-models"

xaynet-server must be compiled with the feature flag model-persistence in order to enable
this feature.

Restore coordinator state

The state of the coordinator can be restored after a failure or shutdown.

Restoring the coordinator be configured via the [restore] setting:

[restore]
enable = true

xaynet-server must be compiled with the feature flag model-persistence in order to enable
this feature.

Improved collection of state machine metrics

In v0.10.0 we introduced the collection of metrics that are emitted in the state machine of
xaynet-server and sent to an InfluxDB instance. In v0.11.0 we have revised the implementation
and improved it further. Metrics are now sent much faster and adding metrics to the code has
become much easier.

Removed

	xaynet_client (was split into xaynet_sdk and xaynet_mobile)

	xaynet_ffi (is now part of xaynet_mobile)

	xaynet_macro

0.10.0 [https://github.com/xaynetwork/xaynet/compare/v0.10.0...v0.11.0] - 2020-09-22

Added

	Preparation for redis support: prepare for xaynet_server to store PET data in redis #416 [https://github.com/xaynetwork/xaynet/pull/416], #515 [https://github.com/xaynetwork/xaynet/pull/515]

	Add support for multipart messages in the message structure #508 [https://github.com/xaynetwork/xaynet/pull/508], #513 [https://github.com/xaynetwork/xaynet/pull/513], #514 [https://github.com/xaynetwork/xaynet/pull/514]

	Generalised scalar extension #496 [https://github.com/xaynetwork/xaynet/pull/496], #507 [https://github.com/xaynetwork/xaynet/pull/507]

	Add server metrics #487 [https://github.com/xaynetwork/xaynet/pull/487], #488 [https://github.com/xaynetwork/xaynet/pull/488], #489 [https://github.com/xaynetwork/xaynet/pull/489], #493 [https://github.com/xaynetwork/xaynet/pull/493]

	Refactor the client into a state machine, and add a client tailored for mobile devices #471 [https://github.com/xaynetwork/xaynet/pull/471], #497 [https://github.com/xaynetwork/xaynet/pull/497], #506 [https://github.com/xaynetwork/xaynet/pull/506]

Changed

	Split the xaynet crate into several sub-crates:

	xaynet_core (0.1.0 released), re-exported as xaynet::core

	xaynet_client (0.1.0 released), re-exported as xaynet::client when compiled with --features client

	xaynet_server (0.1.0 released), re-exported as xaynet::server when compiled with --features server

	xaynet_macro (0.1.0 released)

	xaynet_ffi (not released)

0.9.0 [https://github.com/xaynetwork/xaynet/compare/v0.8.0...v0.9.0] - 2020-07-24

xain/xain-fl repository was renamed to xaynetwork/xaynet.

The new crate will be published as xaynet under v0.9.0.

Added

This release introduces the integration of the PET protocol [https://www.xain.io/assets/XAIN-Whitepaper.pdf] into the platform.

Note:
The integration of the PET protocol required a complete rewrite of the codebase and is therefore not compatible with the previous release.

0.8.0 [https://github.com/xaynetwork/xaynet/compare/v0.7.0...v0.8.0] - 2020-04-08

Added

	New tutorial for the Python SDK #355 [https://github.com/xaynetwork/xaynet/pull/355]

	Swagger description of the REST API #345 [https://github.com/xaynetwork/xaynet/pull/345], and is published at https://xain-fl.readthedocs.io/en/latest/ #358 [https://github.com/xaynetwork/xaynet/pull/358]

	The Python examples now accepts additional parameters (model size, heartbeat period, verbosity, etc.) #351 [https://github.com/xaynetwork/xaynet/pull/351]

	Publish docker images to dockerhub

Security

	Stop using pickle for messages serialization
#355 [https://github.com/xaynetwork/xaynet/pull/355]. pickle is insecure
and can lead to remote code execution. Instead, the default
aggregator uses numpy.save().

Fixed

	The documentation has been updated at https://xain-fl.readthedocs.io/en/latest/ #358 [https://github.com/xaynetwork/xaynet/pull/358]

	Document aggregator error on Darwin platform #365 [https://github.com/xaynetwork/xaynet/pull/365/files]

Changed

	Simplified the Python SDK API #355 [https://github.com/xaynetwork/xaynet/pull/355]

	Added unit tests for the coordinator and aggregator #353 [https://github.com/xaynetwork/xaynet/pull/353], #352 [https://github.com/xaynetwork/xaynet/pull/352]

	Refactor the metrics store #340 [https://github.com/xaynetwork/xaynet/pull/340]

	Speed up the docker builds #348 [https://github.com/xaynetwork/xaynet/pull/348]

0.7.0 [https://github.com/xaynetwork/xaynet/compare/v0.6.0...v0.7.0] - 2020-03-25

On this release we archived the Python code under the legacy folder and shifted the development to Rust.
This release has many breaking changes from the previous versions.
More details will be made available through the updated README.md of the repository.

0.6.0 [https://github.com/xaynetwork/xaynet/compare/v0.5.0...v0.6.0] - 2020-02-26

	HOTFIX add disclaimer (#309) [janpetschexain]

	PB-314: document the new weight exchange mechanism (#308) [Corentin Henry]

	PB-407 add more debug level logging (#303) [janpetschexain]

	PB-44 add heartbeat time and timeout to config (#305) [Robert Steiner]

	PB-423 lock round access (#304) [kwok]

	PB-439 Make thread pool workers configurable (#302) [Robert Steiner]

	PB-159: update xain-{proto,sdk} dependencies to the right branch (#301) [Corentin Henry]

	PB-159: remove weights from gRPC messages (#298) [Corentin Henry]

	PB-431 send participant state to influxdb (#300) [Robert Steiner]

	PB-434 separate metrics (#296) [Robert Steiner]

	PB-406 :snowflake: Configure mypy (#297) [Anastasiia Tymoshchuk]

	PB-428 send coordinator states (#292) [Robert Steiner]

	PB-425 split weight init from training (#295) [janpetschexain]

	PB-398 Round resumption in Coordinator (#285) [kwok]

	Merge pull request #294 from xainag/master. [Daniel Kravetz]

	Hotfix: PB-432 :pencil: :books: Update test badge and CI to reflect changes. [Daniel Kravetz]

	PB-417 Start new development cycle (#291) [Anastasiia Tymoshchuk, kwok]

0.5.0 [https://github.com/xaynetwork/xaynet/compare/v0.4.0...v0.5.0] - 2020-02-12

Fix minor issues, update documentation.

	PB-402 Add more logs (#281) [Robert Steiner]

	DO-76 :whale: non alpine image (#287) [Daniel Kravetz]

	PB-401 Add console renderer (#280) [Robert Steiner]

	DO-80 :ambulance: Update dev Dockerfile to build gRPC (#286) [Daniel Kravetz]

	DO-78 :sparkles: add grafana (#284) [Daniel Kravetz]

	DO-66 :sparkles: Add keycloak (#283) [Daniel Kravetz]

	PB-400 increment epoch base (#282) [janpetschexain]

	PB-397 Simplify write metrics function (#279) [Robert Steiner]

	PB-385 Fix xain-sdk test (#278) [Robert Steiner]

	PB-352 Add sdk config (#272) [Robert Steiner]

	Merge pull request #277 from xainag/master. [Daniel Kravetz]

	Hotfix: update ci. [Daniel Kravetz]

	DO-72 :art: Make CI name and feature consistent with other repos. [Daniel Kravetz]

	DO-47 :newspaper: Build test package on release branch. [Daniel Kravetz]

	PB-269: enable reading participants weights from S3 (#254) [Corentin Henry]

	PB-363 Start new development cycle (#271) [Anastasiia Tymoshchuk]

	PB-119 enable isort diff (#262) [janpetschexain]

	PB-363 :gem: Release v0.4.0. [Daniel Kravetz]

	DO-73 :green_heart: Disable continue_on_failure for CI jobs. Fix mypy. [Daniel Kravetz]

0.4.0 [https://github.com/xaynetwork/xaynet/compare/v0.3.0...v0.4.0] - 2020-02-04

Flatten model weights instead of using lists.
Fix minor issues, update documentation.

	PB-116: pin docutils version (#259) [Corentin Henry]

	PB-119 update isort config and calls (#260) [janpetschexain]

	PB-351 Store participant metrics (#244) [Robert Steiner]

	Adjust isort config (#258) [Robert Steiner]

	PB-366 flatten weights (#253) [janpetschexain]

	PB-379 Update black setup (#255) [Anastasiia Tymoshchuk]

	PB-387 simplify serve module (#251) [Corentin Henry]

	PB-104: make the tests fast again (#252) [Corentin Henry]

	PB-122: handle sigint properly (#250) [Corentin Henry]

	PB-383 write aggregated weights after each round (#246) [Corentin Henry]

	PB-104: Fix exception in monitor_hearbeats() (#248) [Corentin Henry]

	DO-57 Update docker-compose files for provisioning InfluxDB (#249) [Ricardo Saffi Marques]

	DO-59 Provision Redis 5.x for persisting states for the Coordinator (#247) [Ricardo Saffi Marques]

	PB-381: make the log level configurable (#243) [Corentin Henry]

	PB-382: cleanup storage (#245) [Corentin Henry]

	PB-380: split get_logger() (#242) [Corentin Henry]

	XP-332: grpc resource exhausted (#238) [Robert Steiner]

	XP-456: fix coordinator command (#241) [Corentin Henry]

	XP-485 Document revised state machine (#240) [kwok]

	XP-456: replace CLI argument with a config file (#221) [Corentin Henry]

	DO-48 :snowflake: :rocket: Build stable package on git tag with SemVer (#234) [Daniel Kravetz]

	XP-407 update documentation (#239) [janpetschexain]

	XP-406 remove numpy file cli (#237) [janpetschexain]

	XP-544 fix aggregate module (#235) [janpetschexain]

	DO-58: cache xain-fl dependencies in Docker (#232) [Corentin Henry]

	XP-479 Start training rounds from 0 (#226) [kwok]

0.3.0 [https://github.com/xaynetwork/xaynet/compare/v0.2.0...v0.3.0] - 2020-01-21

	XP-505 cleanup docstrings in xain_fl.coordinator (#228)

	XP-498 more generic shebangs (#229)

	XP-510 allow for zero epochs on cli (#227)

	XP-508 Replace circleci badge (#225)

	XP-505 docstrings cleanup (#224)

	XP-333 Replace numproto with xain-proto (#220)

	XP-499 Remove conftest, exclude tests folder (#223)

	XP-480 revise message names (#222)

	XP-436 Reinstate FINISHED heartbeat from Coordinator (#219)

	XP-308 store aggregated weights in S3 buckets (#215)

	XP-308 store aggregated weights in S3 buckets (#215)

	XP-422 ai metrics (#216)

	XP-119 Fix gRPC testing setup so that it can run on macOS (#217)

	XP-433 Fix docker headings (#218)

	Xp 373 add sdk as dependency in fl (#214)

	DO-49 Create initial buckets (#213)

	XP-424 Remove unused packages (#212)

	XP-271 fix pylint issues (#210)

	XP-374 Clean up docs (#211)

	DO-43 docker compose minio (#208)

	XP-384 remove unused files (#209)

	XP-357 make controller parametrisable (#201)

	XP 273 scripts cleanup (#206)

	XP-385 Fix docs badge (#204)

	XP-354 Remove proto files (#200)

	DO-17 Add Dockerfiles, dockerignore and docs (#202)

	XP-241 remove legacy participant and sdk dir (#199)

	XP-168 update setup.py (#191)

	XP-261 move tests to own dir (#197)

	XP-257 cleanup cproto dir (#198)

	XP-265 move benchmarks to separate repo (#193)

	XP-255 update codeowners and authors in setup (#195)

	XP-255 update codeowners and authors in setup (#195)

	XP-229 Update Readme.md (#189)

	XP-337 Clean up docs before generation (#188)

	XP-264 put coordinator as own package (#183)

	XP-272 Archive rust code (#186)

	Xp 238 add participant selection (#179)

	XP-229 Update readme (#185)

	XP-334 Add make docs into docs make file (#184)

	XP-291 harmonize docs styles (#181)

	XP-300 Update docs makefile (#180)

	XP-228 Update readme (#178)

	XP-248 use structlog (#173)

	XP-207 model framework agnostic (#166)

	XAIN-284 rename package name (#176)

	XP-251 Add ability to pass params per cmd args to coordinator (#174)

	XP-167 Add gitter badge (#171)

	Hotfix badge versions and style (#170)

	Integrate docs with readthedocs (#169)

	add pull request template (#168)

0.2.0 [https://github.com/xaynetwork/xaynet/compare/v0.1.0...v0.2.0] - 2019-12-02

Changed

	Renamed package from xain to xain-fl

0.1.0 [https://github.com/xaynetwork/xaynet/tree/v0.1.0] - 2019-09-25

The first public release of XAIN

Added

	FedML implementation on well known
benchmarks [https://github.com/xaynetwork/xaynet/tree/v0.1.0/xain/benchmark] using
a realistic deep learning model structure.

 [image: _images/xaynet.svg]crates.io badge [https://crates.io/crates/xaynet] [image: _images/badge.svg]docs.rs badge [https://docs.rs/xaynet] [image: _images/rustc-1.48+-lightgray.svg]rustc badge [https://www.rust-lang.org/learn/get-started] [image: _images/badge1.svg]Coverage Status [https://codecov.io/gh/xaynetwork/xaynet]
[image: _images/52828c386af6716e48552576545cb02fc0585c54.svg]Maintenance

[image: _images/xaynet_banner.png]Xaynet banner

xaynet

Xaynet: Train on the Edge with Federated Learning

Want a framework that supports federated learning on the edge, in
desktop browsers, integrates well with mobile apps, is performant, and
preserves privacy? Welcome to XayNet, written entirely in Rust!

Making federated learning easy for developers

Frameworks for machine learning - including those expressly for
federated learning - exist already. These frameworks typically
facilitate federated learning of cross-silo use cases - for example in
collaborative learning across a limited number of hospitals or for
instance across multiple banks working on a common use case without
the need to share valuable and sensitive data.

This repository focusses on masked cross-device federated learning to
enable the orchestration of machine learning in millions of low-power
edge devices, such as smartphones or even cars. By doing this, we hope
to also increase the pace and scope of adoption of federated learning
in practice and especially allow the protection of end user data. All
data remains in private local premises, whereby only encrypted AI
models get automatically and asynchronously aggregated. Thus, we
provide a solution to the AI privacy dilemma and bridge the
often-existing gap between privacy and convenience. Imagine, for
example, a voice assistant to learn new words directly on device level
and sharing this knowledge with all other instances, without recording
and collecting your voice input centrally. Or, think about search
engine that learns to personalise search results without collecting
your often sensitive search queries centrally… There are thousands of
such use cases that right today still trade privacy for
convenience. We think this shouldn’t be the case and we want to
provide an alternative to overcome this dilemma.

Concretely, we provide developers with:

	App dev tools: An SDK to integrate federated learning into
apps written in Dart or other languages of choice for mobile development,
as well as frameworks like Flutter.

	Privacy via cross-device federated learning: Train your AI
models locally on edge devices such as mobile phones, browsers,
or even in cars. Federated learning automatically aggregates the
local models into a global model. Thus, all insights inherent in
the local models are captured, while the user data stays
private on end devices.

	Security Privacy via homomorphic encryption: Aggregate
models with the highest security and trust. Xayn’s masking
protocol encrypts all models homomorphically. This enables you
to aggregate encrypted local models into a global one – without
having to decrypt local models at all. This protects private and
even the most sensitive data.

The case for writing this framework in Rust

Our framework for federated learning is not only a framework for
machine learning as such. Rather, it supports the federation of
machine learning that takes place on possibly heterogeneous devices
and where use cases involve many such devices.

The programming language in which this framework is written should
therefore give us strong support for the following:

	Runs “everywhere”: the language should not require its own
runtime and code should compile on a wide range of devices.

	Memory and concurrency safety: code that compiles should be both
memory safe and free of data races.

	Secure communication: state of the art cryptography should be
available in vetted implementations.

	Asynchronous communication: abstractions for asynchronous
communication should exist that make federated learning scale.

	Fast and functional: the language should offer functional
abstractions but also compile code into fast executables.

Rust is one of the very few choices of modern programming languages
that meets these requirements:

	its concepts of Ownership and Borrowing make it both memory and
thread-safe (hence avoiding many common concurrency issues).

	it has a strong and static type discipline and traits, which
describe shareable functionality of a type.

	it is a modern systems programming language, with some functional
style features such as pattern matching, closures and iterators.

	its idiomatic code compares favourably to idiomatic C in performance.

	it compiles to WASM and can therefore be applied natively in browser
settings.

	it is widely deployable and doesn’t necessarily depend on a runtime,
unlike languages such as Java and their need for a virtual machine
to run its code. Foreign Function Interfaces support calls from
other languages/frameworks, including Dart, Python and Flutter.

	it compiles into LLVM, and so it can draw from the abundant tool
suites for LLVM.

Getting Started

Minimum supported rust version

rustc 1.48.0

Running the platform

There are a few different ways to run the backend: via docker, or by deploying it to
a Kubernetes cluster or by compiling the code and running the binary manually.

	Everything described below assumes your shell’s working directory to be the root
of the repository.

	The following instructions assume you have pre-existing knowledge on some
of the referenced software (like docker and docker-compose) and/or a working
setup (if you decide to compile the Rust code and run the binary manually).

	In case you need help with setting up your system accordingly, we recommend you
refer to the official documentation of each tool, as supporting them here would be
beyond the scope of this project:

	Rust [https://www.rust-lang.org/tools/install]

	Docker [https://docs.docker.com/] and Docker Compose [https://docs.docker.com/compose/]

	Kubernetes [https://kubernetes.io/docs/home/]

Note:

With Xaynet v0.11 the coordinator needs a connection to a redis instance in order to save its state.

Don’t connect the coordinator to a Redis instance that is used in production!

We recommend connecting the coordinator to its own Redis instance. We have invested a lot of
time to make sure that the coordinator only deletes its own data but in the current state of
development, we cannot guarantee that this will always be the case.

Using Docker

The convenience of using the docker setup is that there’s no need to setup a working Rust
environment on your system, as everything is done inside the container.

Run an image from Docker Hub

Docker images of the latest releases are provided on
Docker Hub [https://hub.docker.com/r/xaynetwork/xaynet].

You can try them out with the default configs/docker-dev.toml by running:

Xaynet below v0.11

docker run -v ${PWD}/configs/docker-dev.toml:/app/config.toml -p 8081:8081 xaynetwork/xaynet:v0.10.0 /app/coordinator -c /app/config.toml

Xaynet v0.11+

don't forget to adjust the Redis url in configs/docker-dev.toml
docker run -v ${PWD}/configs/docker-dev.toml:/app/config.toml -p 8081:8081 xaynetwork/xaynet:v0.11.0

The docker image contains a release build of the coordinator without optional features.

Run a coordinator with additional infrastructure

Start the coordinator by pointing to the docker/docker-compose.yml file. It spins up all
infrastructure that is essential to run the coordinator with default or optional features.
Keep in mind that this file is used for development only.

docker-compose -f docker/docker-compose.yml up --build

Create a release build

If you would like, you can create an optimized release build of the coordinator,
but keep in mind that the compilation will be slower.

docker build --build-arg RELEASE_BUILD=1 -f ./docker/Dockerfile .

Build a coordinator with optional features

Optional features can be specified via the build argument COORDINATOR_FEATURES.

docker build --build-arg COORDINATOR_FEATURES=tls,metrics -f ./docker/Dockerfile .

Using Kubernetes

To deploy an instance of the coordinator to your Kubernetes cluster, use the manifests that are
located inside the k8s/coordinator folder. The manifests rely on kustomize to be generated
(kustomize is officially supported by kubectl since v1.14). We recommend you thoroughly go
through the manifests and adjust them according to your own setup (namespace, ingress, etc.).

Remember to also check (and adjust if necessary) the default configuration for the coordinator, available
at k8s/coordinator/development/config.toml.

Please adjust the domain used in the k8s/coordinator/development/ingress.yaml file so it matches
your needs (you can also skip ingress altogether, just make sure you remove its reference from
k8s/coordinator/development/kustomization.yaml).

Keep in mind that the ingress configuration that is shown on k8s/coordinator/development/ingress.yaml
relies on resources that aren’t available in this repository, due to their sensitive nature
(TLS key and certificate, for instance).

To verify the generated manifests, run:

kubectl kustomize k8s/coordinator/development

To apply them:

kubectl apply -k k8s/coordinator/development

In case you are not exposing your coordinator via ingress, you can still reach it using a port-forward.
The example below creates a port-forward at port 8081 assuming the coordinator pod is still using the
app=coordinator label:

kubectl port-forward $(kubectl get pods -l "app=coordinator" -o jsonpath="{.items[0].metadata.name}") 8081

Building the project manually

The coordinator without optional features can be built and started with:

cd rust
cargo run --bin coordinator -- -c ../configs/config.toml

Running the example

The example can be found under rust/examples/. It uses a dummy model
but is network-capable, so it’s a good starting point for checking connectivity with
the coordinator.

test-drive

Make sure you have a running instance of the coordinator and that the clients
you will spawn with the command below are able to reach it through the network.

Here is an example on how to start 20 participants that will connect to a coordinator
running on 127.0.0.1:8081:

cd rust
RUST_LOG=info cargo run --example test-drive -- -n 20 -u http://127.0.0.1:8081

For more in-depth details on how to run examples, see the accompanying Getting
Started guide under rust/xaynet-server/src/examples.rs.

Troubleshooting

If you have any difficulties running the project, please reach out to us by
opening an issue [https://github.com/xaynetwork/xaynet/issues/new] and describing your setup
and the problems you’re facing.

Roadmap 2021

[image: _images/roadmap_q1.png]Roadmap Q1

In Q1 we focus entirely on using XayNet for the Xayn app [https://www.xayn.com/] in terms of federated learning and
first simple analytics, such as gathering relevant AI performance data like NDCG metrics [https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG]
because we want to know how our AI models perform without violating the privacy of our users.
As you know, our framework originated with the aim to aggregate machine learning models securely
and privately between edge devices. Thereby, the models are transformed into one-dimensional lists
so that at the end we only aggregate a list of numbers, so why not also aggregate other numerical
analytics data, like AI performance metrics or user behaviour, such as screen times in our app,
all of course with the privacy guarantees of XayNet. As such, we focus predominantly on mobile
cross-device learning but also extend our framework to cover such use cases. In Q1 we take however
mostly care about the internal mobile case and testing so we set the basis to further
generalisation to external cases in the community during the rest of the year.

[image: _images/roadmap_q2.png]Roadmap Q2

In Q2 we have three main focus points: Extending XayNet to support also web applications, since
also our Xayn app [https://www.xayn.com/] will be provided as a web version via WASM [https://webassembly.org/]; integrating our product analytics
extensions in our Xayn app [https://www.xayn.com/] and optimising the client for higher performance, which is one the
major bottlenecks.

[image: _images/roadmap_q3.png]Roadmap Q3

In Q3, we can imagine to opening up the analytics layer also to more general use cases outside of
Xayn itself. Until then our core focus is predominantly internally, yet, of course we hope to get
community and external feature suggestions and reviews. Also we want to make the coordinator more
observable as a foundation for further optimisations.

 [image: ../../_images/xaynet_banner1.png]Xaynet banner

Installation

Prerequisites

	Python 3.6 or higher

Install it from source

first install rust via https://rustup.rs/
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

clone the xaynet repository
git clone https://github.com/xaynetwork/xaynet.git
cd xaynet/bindings/python

create and activate a virtual environment e.g.
pyenv virtualenv xayn
pyenv activate xayn

install maturin
pip install maturin==0.9.0
pip install justbackoff

install xaynet-sdk
maturin develop

Participant API(s)

The Python SDK that consists of two experimental Xaynet participants ParticipantABC
and AsyncParticipant.

The word Async does not refer to either asyncio or asynchronous federated learning.
It refers to the property when a local model can be set. In ParticipantABC
the local model can only be set if the participant was selected an update participant
while in AsyncParticipant the model can be set at any time.

ParticipantABC

The ParticipantABC API is similar to the old one which we introduced in
v0.8.0 [https://github.com/xaynetwork/xaynet/blob/v0.8.0/python/sdk/xain_sdk/participant.py#L24].
Aside from some changes to the method signature, the biggest change is that the participant
now runs in its own thread.

To migrate from v0.8.0 to v0.11.0 please follow the migration guide.

[image: ../../_images/python_participant.svg]ParticipantABC

Public API of ParticipantABC and InternalParticipant

def spawn_participant(
 coordinator_url: str,
 participant: ParticipantABC,
 args: Tuple = (),
 kwargs: dict = {},
 state: Optional[List[int]] = None,
 scalar: float = 1.0,
):
 """
 Spawns a `InternalParticipant` in a separate thread and returns a participant handle.
 If a `state` is passed, this state is restored, otherwise a new `InternalParticipant`
 is created.

 Args:
 coordinator_url: The url of the coordinator.
 participant: A class that implements `ParticipantABC`.
 args: The args that get passed to the constructor of the `participant` class.
 kwargs: The kwargs that get passed to the constructor of the `participant` class.
 state: A serialized participant state. Defaults to `None`.
 scalar: The scalar used for masking. Defaults to `1.0`.

 Note:
 The `scalar` is used later when the models are aggregated in order to scale their weights.
 It can be used when you want to weight the participants updates differently.

 For example:
 If not all participant updates should be weighted equally but proportionally to their
 training samples, the scalar would be set to `scalar = 1 / number_of_samples`.

 Returns:
 The `InternalParticipant`.

 Raises:
 CryptoInit: If the initialization of the underling crypto library has failed.
 ParticipantInit: If the participant cannot be initialized. This is most
 likely caused by an invalid `coordinator_url`.
 ParticipantRestore: If the participant cannot be restored due to invalid
 serialized state. This exception can never be thrown if the `state` is `None`.
 Exception: Any exception that can be thrown during the instantiation of `participant`.
 """

class ParticipantABC(ABC):
 def train_round(self, training_input: Optional[TrainingInput]) -> TrainingResult:
 """
 Trains a model. `training_input` is the deserialized global model
 (see `deserialize_training_input`). If no global model exists
 (usually in the first round), `training_input` will be `None`.
 In this case the weights of the model should be initialized and returned.

 Args:
 self: The participant.
 training_input: The deserialized global model (weights of the global model) or None.

 Returns:
 The updated model weights (the local model).
 """

 def serialize_training_result(self, training_result: TrainingResult) -> list:
 """
 Serializes the `training_result` into a `list`. The data type of the
 elements must match the data type defined in the coordinator configuration.

 Args:
 self: The participant.
 training_result: The `TrainingResult` of `train_round`.

 Returns:
 The `training_result` as a `list`.
 """

 def deserialize_training_input(self, global_model: list) -> TrainingInput:
 """
 Deserializes the `global_model` from a `list` to the type of `TrainingInput`.
 The data type of the elements matches the data type defined in the coordinator
 configuration. If no global model exists (usually in the first round), the method will
 not be called by the `InternalParticipant`.

 Args:
 self: The participant.
 global_model: The global model.

 Returns:
 The `TrainingInput` for `train_round`.
 """

 def participate_in_update_task(self) -> bool:
 """
 A callback used by the `InternalParticipant` to determine whether the
 `train_round` method should be called. This callback is only called
 if the participant is selected as an update participant. If `participate_in_update_task`
 returns `False`, `train_round` will not be called by the `InternalParticipant`.

 If the method is not overridden, it returns `True` by default.

 Returns:
 Whether the `train_round` method should be called when the participant
 is an update participant.
 """

 def on_new_global_model(self, global_model: Optional[TrainingInput]) -> None:
 """
 A callback that is called by the `InternalParticipant` once a new global model is
 available. If no global model exists (usually in the first round), `global_model` will
 be `None`. If a global model exists, `global_model` is already the deserialized
 global model. (See `deserialize_training_input`)

 If the method is not overridden, it does nothing by default.

 Args:
 self: The participant.
 global_model: The deserialized global model or `None`.
 """

 def on_stop(self) -> None:
 """
 A callback that is called by the `InternalParticipant` before the `InternalParticipant`
 thread is stopped.

 This callback can be used, for example, to show performance values ​​that have been
 collected in the participant over the course of the training rounds.

 If the method is not overridden, it does nothing by default.

 Args:
 self: The participant.
 """

class InternalParticipant:
 def stop(self) -> List[int]:
 """
 Stops the execution of the participant and returns its serialized state.
 The serialized state can be passed to the `spawn_participant` function
 to restore a participant.

 After calling `stop`, the participant is consumed. Every further method
 call on the handle of `InternalParticipant` leads to an `UninitializedParticipant`
 exception.

 Note:
 The serialized state contains unencrypted **private key(s)**. If used
 in production, it is important that the serialized state is securely saved.

 Returns:
 The serialized state of the participant.
 """

AsyncParticipant

We noticed that the API of ParticipantABC/InternalParticipant reduces a fair amount of
code on the user side, however, it may not be flexible enough to cover some of the following
use cases:

	The user wants to use the global/local model in a different thread.

It is possible to provide methods for this on the InternalParticipant but they are not
straight forward to implement. To make them thread-safe, it is probably necessary to use
synchronization primitives but this would make the InternalParticipant more complicated.
In addition, questions arise such as: Would the user want to be able to get
the current local model at any time or would they like to be notified as soon as a new
local model is available.

	Train a model without the participant

Since the training of the model is embedded in the ParticipantABC, this will probably lead to
code duplication if the user wants to perform the training without the participant. Furthermore,
the embedding of the training in the ParticipantABC can also be a problem once the participant
is integrated into an existing application, considering the code for the training has to be
moved into the train_round method, which can lead to significant changes to the existing code.

	Custom exception handling

Last but not least, the question arises how we can inform the user that an exception has been
thrown. We do not want the participant to be terminated with every exception but we want to
give the user the opportunity to respond appropriately.

The main issue we saw is that the participant is responsible for training the model
and to run the PET protocol. Therefore, we offer a second API in which the training
of the model is no longer part of the participant. This results in a simpler and more flexible API,
but it comes with the tradeoff that the user needs to perform the de/serialization of the
global/local on their side.

[image: ../../_images/python_async_participant.svg]AsyncParticipant

Public API of AsyncParticipant

def spawn_async_participant(coordinator_url: str, state: Optional[List[int]] = None, scalar: float = 1.0)
 -> (AsyncParticipant, threading.Event):
 """
 Spawns a `AsyncParticipant` in a separate thread and returns a participant handle
 together with a global model notifier. If a `state` is passed, this state is restored,
 otherwise a new participant is created.

 The global model notifier sets the flag once a new global model is available.
 The flag is also set when the global model is `None` (usually in the first round).
 The flag is reset once the method `get_global_model` has been called but it is also possible
 to reset the flag manually by calling
 [`clear()`](https://docs.python.org/3/library/threading.html#threading.Event.clear).

 Args:
 coordinator_url: The url of the coordinator.
 state: A serialized participant state. Defaults to `None`.
 scalar: The scalar used for masking. Defaults to `1.0`.

 Note:
 The `scalar` is used later when the models are aggregated in order to scale their weights.
 It can be used when you want to weight the participants updates differently.

 For example:
 If not all participant updates should be weighted equally but proportionally to their
 training samples, the scalar would be set to `scalar = 1 / number_of_samples`.

 Returns:
 A tuple which consists of an `AsyncParticipant` and a global model notifier.

 Raises:
 CryptoInit: If the initialization of the underling crypto library has failed.
 ParticipantInit: If the participant cannot be initialized. This is most
 likely caused by an invalid `coordinator_url`.
 ParticipantRestore: If the participant cannot be restored due to invalid
 serialized state. This exception can never be thrown if the `state` is `None`.
 """

class AsyncParticipant:
 def get_global_model(self) -> Optional[list]:
 """
 Fetches the current global model. This method can be called at any time. If no global
 model exists (usually in the first round), the method returns `None`.

 Returns:
 The current global model or `None`. The data type of the elements matches the data
 type defined in the coordinator configuration.

 Raises:
 GlobalModelUnavailable: If the participant cannot connect to the coordinator to get
 the global model.
 GlobalModelDataTypeMisMatch: If the data type of the global model does not match
 the data type defined in the coordinator configuration.
 """

 def set_local_model(self, local_model: list):
 """
 Sets a local model. This method can be called at any time. Internally the
 participant first caches the local model. As soon as the participant is selected as an
 update participant, the currently cached local model is used. This means that the cache
 is empty after this operation.

 If a local model is already in the cache and `set_local_model` is called with a new local
 model, the current cached local model will be replaced by the new one.
 If the participant is an update participant and there is no local model in the cache,
 the participant waits until a local model is set or until a new round has been started.

 Args:
 local_model: The local model. The data type of the elements must match the data
 type defined in the coordinator configuration.

 Raises:
 LocalModelLengthMisMatch: If the length of the local model does not match the
 length defined in the coordinator configuration.
 LocalModelDataTypeMisMatch: If the data type of the local model does not match
 the data type defined in the coordinator configuration.
 """

 def stop(self) -> List[int]:
 """
 Stops the execution of the participant and returns its serialized state.
 The serialized state can be passed to the `spawn_async_participant` function
 to restore a participant.

 After calling `stop`, the participant is consumed. Every further method
 call on the handle of `AsyncParticipant` leads to an `UninitializedParticipant`
 exception.

 Note:
 The serialized state contains unencrypted **private key(s)**. If used
 in production, it is important that the serialized state is securely saved.

 Returns:
 The serialized state of the participant.
 """

Enable logging of xaynet-mobile

If you are interested in what xaynet-mobile is doing under the hood,
you can turn on the logging via the environment variable XAYNET_CLIENT.

For example:

XAYNET_CLIENT=info python examples/participate_in_update.py

How can I … ?

We have created a few examples that show the basic methods in action.
But if something is missing, not very clear or not working properly, please let us know
by opening an issue.

We are happy to help and open to ideas or feedback :)

Migration from v0.8.0 to v.0.11.0

To demonstrate the API changes from v0.8.0 to v.0.11.0, we will use the keras example
which is available in both versions. For reasons of clarity, some parts of the code have
been removed.

v0.8.0 [https://github.com/xaynetwork/xaynet/blob/v0.8.0/python/sdk/xain_sdk/participant.py#L24]

pip install xain-sdk

from xain_sdk import ParticipantABC, configure_logging, run_participant

class Participant(ParticipantABC):
 def train_round(
 self, training_input: Optional[np.ndarray]
) -> Tuple[np.ndarray, int]:
 if training_input is None:
 self.regressor = Regressor(len(self.trainset_x.columns))
 return (self.regressor.get_weights(), 0)

 return (self.regressor.get_weights(), self.number_of_samples)

 def deserialize_training_input(self, data: bytes) -> Optional[np.ndarray]:
 if not data:
 return None

 reader = BytesIO(data)
 return np.load(reader, allow_pickle=False)

 def serialize_training_result(
 self, training_result: Tuple[np.ndarray, int]
) -> bytes:
 (weights, number_of_samples) = training_result

 writer = BytesIO()
 writer.write(number_of_samples.to_bytes(4, byteorder="big"))
 np.save(writer, weights, allow_pickle=False)
 return writer.getbuffer()[:]

def main() -> None:
 participant = Participant(args.data_directory)

 run_participant(
 participant, args.coordinator_url, heartbeat_period=args.heartbeat_period
)

v0.11.0 [https://github.com/xaynetwork/xaynet/blob/v0.11.0/bindings/python/xaynet_sdk/participant.py]

pip install xaynet-sdk-python

- renamed `run_participant` to `spawn_participant`
- removed `configure_logging`
from xaynet_sdk import ParticipantABC, spawn_participant

class Participant(ParticipantABC):
 # Returns:
 # - returns a `np.ndarray` instead of `Tuple[np.ndarray, int]`
 # The scalar has been moved to the `spawn_participant` function.
 # This change is only temporary. In a future version it will again
 # be possible to set the scalar in the `train_round` method.
 def train_round(self, training_input: Optional[np.ndarray]) -> np.ndarray:
 if training_input is None:
 self.regressor = Regressor(len(self.trainset_x.columns))
 return self.regressor.get_weights()

 return self.regressor.get_weights()

 # Args:
 # - renamed `data` to `global_model`
 # - provides a `list` instead of `Optional[bytes]`
 # - `deserialize_training_input` is not called if `global_model` is `None`
 # therefore the `None` case no longer needs to be handled.
 #
 # Returns:
 # - returns a `np.ndarray` instead of `Optional[np.ndarray]`
 def deserialize_training_input(self, global_model: list) -> np.ndarray:
 return np.array(global_model)

 # Args:
 # - provides a `np.ndarray` instead of `Tuple[np.ndarray, int]`
 #
 # Returns:
 # - returns a `list` instead of `bytes`
 def serialize_training_result(self, training_result: np.ndarray) -> list:
 return training_result.tolist()

def main() -> None:
 # - `spawn_participant` spawns the participant in a separate thread instead of the main thread.
 #
 # Args:
 # - removed `heartbeat_period`
 # - `Participant` is instantiated in the participant thread instead of the main thread.
 # This ensures that both the participant as well as the model of `Participant` live on
 # the same thread. If they don't live on the same thread, it can cause problems with some
 # of the ml frameworks.
 participant = spawn_participant(
 args.coordinator_url,
 Participant,
 args=(args.data_directory,)
 scalar = 1 / number_of_samples
)

 try:
 participant.join()
 except KeyboardInterrupt:
 participant.stop()

Examples

Some examples that show how the ParticipantABC or AsyncParticipant can be used.

Getting Started

All examples in this section work without changing the coordinator
config.toml or docker-dev.toml.

	hello_world.py A basic ParticipantABC example

	hello_world_async.py A basic AsyncParticipant example

	download_global_model.py A ParticipantABC that only downloads the latest global model

	download_global_model_async.py An AsyncParticipant that only downloads the latest global model

	multiple_participants.py Spawn multiple ParticipantABCs in a single process

	participate_in_update.py Only train a model when there is enough battery left

	restore.py Save and restore the state of an AsyncParticipant

Keras House Prices

	keras_house_prices A full machine learning example

keras_house_prices Example

Prerequisites

	Python 3.7.1 or higher

	Adjust the coordinator settings

Change the model length to 55117 and the bound_type to B2
in docker-dev.toml.

[model]
length = 55117

[mask]
bound_type = "B2"

Curious what the bond_type is? You can find an explanation here [https://docs.rs/xaynet-core/0.1.0/xaynet_core/mask/index.html#bound-type].

	Start the coordinator

in the root of the repository
docker-compose -f docker/docker-compose.yml up --build

All the commands in this section are run from the
bindings/python/examples/keras_house_prices directory.

	Install the SDK:

Follow the installation steps described in bindings/python/README.md.

	Install the example:

pip install -e .

	Download the dataset from Kaggle:
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

	Extract the data (into
python/client_examples/keras_house_prices/data/ here, but the
location doesn’t matter):

(cd ./data ; unzip house-prices-advanced-regression-techniques.zip)

	Prepare the data:

split-data --data-directory data --number-of-participants 10

	Run one participant:

XAYNET_CLIENT=info run-participant --data-directory data --coordinator-url http://127.0.0.1:8081

	Repeat the previous step to run more participants

Xaynet FFI

Generate C-Header File

ffi-support provides some helpful macros to reduce boilerplate code.
However the feature (--pretty=expanded) to expand these macros
during the generation of the C-header file is still
unstable. Therefore we need to use the rust nightly.

To generate the header files, install cbindgen [https://github.com/eqrion/cbindgen/] and run:

cargo build
RUSTUP_TOOLCHAIN=nightly cbindgen \
 --config cbindgen.toml \
 --crate xaynet-mobile \
 --output xaynet_ffi.h

Run tests

macOS

cc -o tests/ffi_test.o -Wl,-dead_strip -I. tests/ffi_test.c ../target/debug/libxaynet_mobile.a -framework Security -framework Foundation
./tests/ffi_test.o

Linux

gcc \
 tests/ffi_test.c
 -Wall \
 -I. \
 -lpthread -lm -ldl \
 ../target/debug/libxaynet_mobile.a \
 -o tests/ffi_test.o
./tests/ffi_test.o

To check for memory leaks, you can use Valgrind:

valgrind --tool=memcheck --leak-check=full --show-leak-kinds=all -s ./tests/ffi_test.o

 _static/up.png

_images/roadmap_q3.png
Milestones - Q3

Generalisation of federated mobile product analytics
for iOS, Android, Flutter and React Native

MVP of federated product analytics for the web via
WebAssembly

Observability of coordinator

Due of the complexity and asynchrony of the coordinator, it is
impractical to observe what is happening inside the coordinator.
This makes it difficult for us to identify the root cause of a bug.
Thus, we make our coordinator observable by collecting

telemetry data.

_images/roadmap_q1.png
Milestones - Q1

Upgrade to tokio 1.0 Providing of internal coordinator API

We wait for all dependencies like tower and rusoto to upgrade to Requirement for changing the coordinator configuration at

tokio 1.0 so we can upgrade, too runtime, termination & pausing of coordinator

Termination & pausing of coordinator Ability to change coordinator parameters in
production

Providing of a desktop client with Python bindings

for TensorFlow and PyTorch Integration of mobile client authorisation

Although we predominantly focus on a mobile and web-based Via ingress on Kubernetes

cross-device use case internally, we also provide a desktop client

and Python bindings to popular frameworks so many data

scientists can test XayNet as well. Prototype of parametrisable multi-spec aggregation
functions
Including alternative aggregation functions like min-max and

Prototype of federated mobile product analytics histogram aggregation

_images/roadmap_q2.png
Milestones - Q2

Providing of a web client via WebAssembly

As we work on building Xayn for browsers we also require our
XayNet client to work on the web via WASM.

Multi-threading and performance optimisation of

client crypto operations for mobile client
The homomorphic encryption operations on the client side are
currently the largest bottleneck on mobile. Therefore, we need to

optimise this.

Integration of federated mobile product analytics

into Xayn app

External security review/audit

Since cryptography always may cause certain side effects and
since nobody is perfect, we will conduct an external security
audit of XayNet in order to further enhance internal and external

trust.

_images/xaynet_banner1.png
A

XayNet

_static/ajax-loader.gif

_images/xaynet_banner.png
A

XayNet

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

