

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to the Python form of Semantic Versioning [https://www.python.org/dev/peps/pep-0440/].

For reference, the possible headings are:

	Added for new features.

	Changed for changes in existing functionality.

	Deprecated for soon-to-be removed features.

	Removed for now removed features.

	Fixed for any bug fixes.

	Security in case of vulnerabilities.

	External Contributors to list all external contributors.

	Notes for notes regarding this particular release.

unreleased [https://github.com/xainag/xain-fl/pulls?utf8=%E2%9C%93&q=merged%3A%3E2019-09-25+]

[0.9.0] - 2020-07-24

xain/xain-fl repository was renamed to xaynetwork/xaynet.

The new crate will be published as xaynet under v0.9.0.

Added

This release introduces the integration of the PET protocol [https://www.xain.io/assets/XAIN-Whitepaper.pdf] into the platform.

Note:
The integration of the PET protocol required a complete rewrite of the codebase and is therefore not compatible with the previous release.

[0.8.0] - 2020-04-08

Added

	New tutorial for the Python SDK (https://github.com/xainag/xain-fl/pull/355)

	Swagger description of the REST API (https://github.com/xainag/xain-fl/pull/345), and is published at https://xain-fl.readthedocs.io/en/latest/ (https://github.com/xainag/xain-fl/pull/358)

	The Python examples now accepts additional parameters (model size, heartbeat period, verbosity, etc.) (https://github.com/xainag/xain-fl/pull/351)

	Publish docker images to dockerhub

Security

	Stop using pickle for messages serialization
(https://github.com/xainag/xain-fl/pull/355). pickle is insecure
and can lead to remote code execution. Instead, the default
aggregator uses numpy.save().

Fixed

	The documentation has been updated at https://xain-fl.readthedocs.io/en/latest/ (https://github.com/xainag/xain-fl/pull/358)

	Document aggregator error on Darwin platform (https://github.com/xainag/xain-fl/pull/365/files)

Changed

	Simplified the Python SDK API (https://github.com/xainag/xain-fl/pull/355)

	Added unit tests for the coordinator and aggregator (https://github.com/xainag/xain-fl/pull/353), (https://github.com/xainag/xain-fl/pull/352)

	Refactor the metrics store (https://github.com/xainag/xain-fl/pull/340)

	Speed up the docker builds (https://github.com/xainag/xain-fl/pull/348)

[0.7.0] - 2020-03-25

On this release we archived the Python code under the legacy folder and shifted the development to Rust.
This release has many breaking changes from the previous versions.
More details will be made available through the updated README.md of the repository.

[0.6.0] - 2020-02-26

	HOTFIX add disclaimer (#309) [janpetschexain]

	PB-314: document the new weight exchange mechanism (#308) [Corentin Henry]

	PB-407 add more debug level logging (#303) [janpetschexain]

	PB-44 add heartbeat time and timeout to config (#305) [Robert Steiner]

	PB-423 lock round access (#304) [kwok]

	PB-439 Make thread pool workers configurable (#302) [Robert Steiner]

	PB-159: update xain-{proto,sdk} dependencies to the right branch (#301) [Corentin Henry]

	PB-159: remove weights from gRPC messages (#298) [Corentin Henry]

	PB-431 send participant state to influxdb (#300) [Robert Steiner]

	PB-434 separate metrics (#296) [Robert Steiner]

	PB-406 :snowflake: Configure mypy (#297) [Anastasiia Tymoshchuk]

	PB-428 send coordinator states (#292) [Robert Steiner]

	PB-425 split weight init from training (#295) [janpetschexain]

	PB-398 Round resumption in Coordinator (#285) [kwok]

	Merge pull request #294 from xainag/master. [Daniel Kravetz]

	Hotfix: PB-432 :pencil: :books: Update test badge and CI to reflect changes. [Daniel Kravetz]

	PB-417 Start new development cycle (#291) [Anastasiia Tymoshchuk, kwok]

[0.5.0] - 2020-02-12

Fix minor issues, update documentation.

	PB-402 Add more logs (#281) [Robert Steiner]

	DO-76 :whale: non alpine image (#287) [Daniel Kravetz]

	PB-401 Add console renderer (#280) [Robert Steiner]

	DO-80 :ambulance: Update dev Dockerfile to build gRPC (#286) [Daniel Kravetz]

	DO-78 :sparkles: add grafana (#284) [Daniel Kravetz]

	DO-66 :sparkles: Add keycloak (#283) [Daniel Kravetz]

	PB-400 increment epoch base (#282) [janpetschexain]

	PB-397 Simplify write metrics function (#279) [Robert Steiner]

	PB-385 Fix xain-sdk test (#278) [Robert Steiner]

	PB-352 Add sdk config (#272) [Robert Steiner]

	Merge pull request #277 from xainag/master. [Daniel Kravetz]

	Hotfix: update ci. [Daniel Kravetz]

	DO-72 :art: Make CI name and feature consistent with other repos. [Daniel Kravetz]

	DO-47 :newspaper: Build test package on release branch. [Daniel Kravetz]

	PB-269: enable reading participants weights from S3 (#254) [Corentin Henry]

	PB-363 Start new development cycle (#271) [Anastasiia Tymoshchuk]

	PB-119 enable isort diff (#262) [janpetschexain]

	PB-363 :gem: Release v0.4.0. [Daniel Kravetz]

	DO-73 :green_heart: Disable continue_on_failure for CI jobs. Fix mypy. [Daniel Kravetz]

[0.4.0] - 2020-02-04

Flatten model weights instead of using lists.
Fix minor issues, update documentation.

	PB-116: pin docutils version (#259) [Corentin Henry]

	PB-119 update isort config and calls (#260) [janpetschexain]

	PB-351 Store participant metrics (#244) [Robert Steiner]

	Adjust isort config (#258) [Robert Steiner]

	PB-366 flatten weights (#253) [janpetschexain]

	PB-379 Update black setup (#255) [Anastasiia Tymoshchuk]

	PB-387 simplify serve module (#251) [Corentin Henry]

	PB-104: make the tests fast again (#252) [Corentin Henry]

	PB-122: handle sigint properly (#250) [Corentin Henry]

	PB-383 write aggregated weights after each round (#246) [Corentin Henry]

	PB-104: Fix exception in monitor_hearbeats() (#248) [Corentin Henry]

	DO-57 Update docker-compose files for provisioning InfluxDB (#249) [Ricardo Saffi Marques]

	DO-59 Provision Redis 5.x for persisting states for the Coordinator (#247) [Ricardo Saffi Marques]

	PB-381: make the log level configurable (#243) [Corentin Henry]

	PB-382: cleanup storage (#245) [Corentin Henry]

	PB-380: split get_logger() (#242) [Corentin Henry]

	XP-332: grpc resource exhausted (#238) [Robert Steiner]

	XP-456: fix coordinator command (#241) [Corentin Henry]

	XP-485 Document revised state machine (#240) [kwok]

	XP-456: replace CLI argument with a config file (#221) [Corentin Henry]

	DO-48 :snowflake: :rocket: Build stable package on git tag with SemVer (#234) [Daniel Kravetz]

	XP-407 update documentation (#239) [janpetschexain]

	XP-406 remove numpy file cli (#237) [janpetschexain]

	XP-544 fix aggregate module (#235) [janpetschexain]

	DO-58: cache xain-fl dependencies in Docker (#232) [Corentin Henry]

	XP-479 Start training rounds from 0 (#226) [kwok]

[0.3.0] - 2020-01-21

	XP-505 cleanup docstrings in xain_fl.coordinator (#228)

	XP-498 more generic shebangs (#229)

	XP-510 allow for zero epochs on cli (#227)

	XP-508 Replace circleci badge (#225)

	XP-505 docstrings cleanup (#224)

	XP-333 Replace numproto with xain-proto (#220)

	XP-499 Remove conftest, exclude tests folder (#223)

	XP-480 revise message names (#222)

	XP-436 Reinstate FINISHED heartbeat from Coordinator (#219)

	XP-308 store aggregated weights in S3 buckets (#215)

	XP-308 store aggregated weights in S3 buckets (#215)

	XP-422 ai metrics (#216)

	XP-119 Fix gRPC testing setup so that it can run on macOS (#217)

	XP-433 Fix docker headings (#218)

	Xp 373 add sdk as dependency in fl (#214)

	DO-49 Create initial buckets (#213)

	XP-424 Remove unused packages (#212)

	XP-271 fix pylint issues (#210)

	XP-374 Clean up docs (#211)

	DO-43 docker compose minio (#208)

	XP-384 remove unused files (#209)

	XP-357 make controller parametrisable (#201)

	XP 273 scripts cleanup (#206)

	XP-385 Fix docs badge (#204)

	XP-354 Remove proto files (#200)

	DO-17 Add Dockerfiles, dockerignore and docs (#202)

	XP-241 remove legacy participant and sdk dir (#199)

	XP-168 update setup.py (#191)

	XP-261 move tests to own dir (#197)

	XP-257 cleanup cproto dir (#198)

	XP-265 move benchmarks to separate repo (#193)

	XP-255 update codeowners and authors in setup (#195)

	XP-255 update codeowners and authors in setup (#195)

	XP-229 Update Readme.md (#189)

	XP-337 Clean up docs before generation (#188)

	XP-264 put coordinator as own package (#183)

	XP-272 Archive rust code (#186)

	Xp 238 add participant selection (#179)

	XP-229 Update readme (#185)

	XP-334 Add make docs into docs make file (#184)

	XP-291 harmonize docs styles (#181)

	XP-300 Update docs makefile (#180)

	XP-228 Update readme (#178)

	XP-248 use structlog (#173)

	XP-207 model framework agnostic (#166)

	XAIN-284 rename package name (#176)

	XP-251 Add ability to pass params per cmd args to coordinator (#174)

	XP-167 Add gitter badge (#171)

	Hotfix badge versions and style (#170)

	Integrate docs with readthedocs (#169)

	add pull request template (#168)

[0.2.0] - 2019-12-02

Changed

	Renamed package from xain to xain-fl

0.1.0 [https://github.com/xainag/xain-fl/pulls?utf8=%E2%9C%93&q=merged%3A%3C%3D2019-09-25+] - 2019-09-25

The first public release of XAIN

Added

	FedML implementation on well known
benchmarks [https://github.com/xainag/xain-fl/tree/master/benchmarks/benchmark] using
a realistic deep learning model structure.

XayNet: federated learning made private, performant, and ubiquitous

tags: Xayn, Federated Learning, Privacy

This is the main source code repository for xaynet [https://www.xaynet.dev/].

Developers: feel free to jump to the technical “Getting Started” section.

[image: _images/xaynet.svg]crates.io badge [https://crates.io/crates/xaynet] [image: _images/badge.svg]docs.rs badge [https://docs.rs/xaynet] [image: _images/xaynet1.svg]crates.io downloads

Want a framework that supports federated learning on the edge, in desktop browsers, integrates well with mobile apps, is performant, and preserves privacy? Welcome to XayNet, written entirely in Rust!

Making federated learning easy for developers

Frameworks for machine learning - including those expressly for federated learning - exist already. These frameworks typically require the use of specific machine learning technology - for example TensorFlow - or facilitate federated learning of cross-silo use cases - for example in collaborative learning across a limited number of hospitals.

We want to give developers more freedom of choice and abilities in the creation of federated learning software. By doing this, we hope to also increase the pace and scope of adoption of federated learning in practice.

Concretely, we provide developers with:

	My AI tools: The flexibility to use the machine-learning frameworks and tools of their choice.

	My app dev tools: The ability to integrate federated learning into apps written in Dart, Python or other languages of choice, as well as frameworks like Flutter.

	“Federated learning” everywhere: The ability to run federated learning everywhere - be it desktop browsers, smartphones or micro-controllers.

	“Federated learning” inside: A simple integration means of making an AI application ready for federated learning.

	Privacy by design: A communication protocol for federated learning that scales, is secure, and preserves the privacy of participating devices.

The case for writing this framework in Rust

Rust has definite potential as a host language for machine learning itself. But, above, we already insisted on giving developers freedom of choice here. Hence, we selected Rust for other reasons.

Our framework for federated learning is not a framework for machine learning as such. Rather, it supports the federation of machine learning that takes place on possibly heterogeneous devices and where use cases involve many such devices.

The programming language in which this framework is written should therefore give us strong support for the following:

	Compiles and runs “everywhere”: The language should not require its own runtime and code should compile on a wide range of devices.

	Memory and Concurrency Safety: Code that compiles should be both memory safe and free of data races.

	Secure communication: State of the art cryptography should be available in vetted implementations.

	Asynchronous communication: Abstractions for asynchronous communication should exist that make federated learning scale.

	Fast and functional: The language should offer functional abstractions but also compile code into fast executables.

Rust is one of the very few choices of modern programming languages that meet these requirements:

	Its concepts of Ownership and Borrowing make it both memory and thread-safe (hence avoiding potential concurrency issues).

	It has a strong and static type discipline and traits, which describe shareable functionality of a type.

	It has rich functional abstractions, for example the tower-service based on the foundational trait Service.

	Its idiomatic code compares favorably to idiomatic C in performance.

	It is widely deployable and doesn’t necessarily depend on a runtime, unlike languages such as Java and their need for a virtual machine to run its code. Foreign Function Interfaces support calls from other languages/frameworks, including Dart, Python and Flutter.

	And it compiles into LLVM, and so it can draw from the abundant tool suites for LLVM.

We love XayNet and would like to hear about your use of it

We feel blessed to have such a strong Engineering team that includes several senior Rust developers and folks who were eager to become experienced Rust programmers themselves! All of us are excited to share the fruits of this labor with you.

So without further ado, here is the release of XayNet, our federated learning framework written entirely in Rust. We hope you will like and use this framework. And we will be grateful for any feedback, contributions or news on your usage of XayNet in your own projects.

Getting Started

Running the platform

There are a few different ways to run the backend: via docker, or by deploying it to
a Kubernetes cluster or by compiling the code and running the binary manually.

	Everything described below assumes your shell’s working directory to be the root
of the repository.

	The following instructions assume you have pre-existing knowledge on some
of the referenced software (like docker and docker-compose) and/or a working
setup (if you decide to compile the Rust code and run the binary manually).

	In case you need help with setting up your system accordingly, we recommend you
refer to the official documentation of each tool, as supporting them here would be
beyond the scope of this project:

	Rust [https://www.rust-lang.org/tools/install]

	Docker [https://docs.docker.com/] and Docker Compose [https://docs.docker.com/compose/]

	Kubernetes [https://kubernetes.io/docs/home/]

Using docker-compose

The convenience of using the docker setup is that there’s no need to setup a working Rust
environment on your system, as everything is done inside the container.

Start the coordinator by pointing to the docker/docker-compose.yml file. Keep in mind that
given this is the file used for development, it spins up some infrastructure that is currently
not essential.

docker-compose -f docker/docker-compose.yml up --build

If you would like, you can use the docker/docker-compose-release.yml file, but keep in mind
that given this runs a release build with optimizations, compilation will be slower.

docker-compose -f docker/docker-compose-release.yml up --build

Using Kubernetes

To deploy an instance of the coordinator to your Kubernetes cluster, use the manifests that are
located inside the k8s/coordinator folder. The manifests rely on kustomize to be generated
(kustomize is officially supported by kubectl since v1.14). We recommend you thoroughly go
through the manifests and adjust them according to your own setup (namespace, ingress, etc.).

Remember to also check (and adjust if necessary) the default configuration for the coordinator, available
at k8s/coordinator/development/config.toml.

Please adjust the domain used in the k8s/coordinator/development/ingress.yaml file so it matches
your needs (you can also skip ingress altogether, just make sure you remove its reference from
k8s/coordinator/development/kustomization.yaml).

Keep in mind that the ingress configuration that is shown on k8s/coordinator/development/ingress.yaml
relies on resources that aren’t available in this repository, due to their sensitive nature
(TLS key and certificate, for instance).

To verify the generated manifests, run:

kubectl kustomize k8s/coordinator/development

To apply them:

kubectl apply -k k8s/coordinator/development

In case you are not exposing your coordinator via ingress, you can still reach it using a port-forward.
The example below creates a port-forward at port 8081 assuming the coordinator pod is still using the
app=coordinator label:

kubectl port-forward $(kubectl get pods -l "app=coordinator" -o jsonpath="{.items[0].metadata.name}") 8081

Building the project manually

The coordinator can be built and started with:

cargo run --bin coordinator --manifest-path rust/Cargo.toml -- -c configs/config.toml

Running the example

The example can be found under rust/src/bin/. It uses a dummy model
but is network-capable, so it’s a good starting point for checking connectivity with
the coordinator.

test-drive-net.rs

Make sure you have a running instance of the coordinator and that the clients
you will spawn with the command below are able to reach it through the network.

Here is an example on how to start 20 participants that will connect to a coordinator
running on 127.0.0.1:8081:

RUST_LOG=xaynet=info cargo run --bin test-drive-net -- -n 20 -u http://127.0.0.1:8081

Troubleshooting

If you have any difficulties running the project, please reach out to us by
opening an issue [https://github.com/xaynetwork/xaynet/issues/new] and describing your setup
and the problems you’re facing.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

